

EmiratesGBC Technical Workshops by Farnek

COP28 Insights -Energy Transition for the Built Environment

Presented by

Muna Alnahdi ,

Head of Sustainability & Consultancy

20 of Feb ,2024

Technology | Sustainability | Innovation | Cleaning | Maintenance | Security | Consultancy | Hospitality | Hitches & Glitches | Smashing

Supported more than 100 clients in their sustainability Journey for more than a decade

Leveraging our diverse team experience of more than 20 in various sustainability domains

Muna Alnahdi

Head of Sustainability & Consultancy at Farnek

An award winner Energy and Sustainability expert with more than 14 years of experience in energy, green buildings, and decarbonization. Through her versatile experience and thought leadership, Muna has been assisting organizations to become real players in the field of sustainable development.

In

Muna.alnahdi@farnek.com

+971503114878

muna-alnahdi

Agenda

COP28 Insights

Why Energy Transition

Energy Transition in the UAE

Energy Transition and Decarbonization for the built environment

Case Studies

I would like to learn more about you

Name, function and organization

1 word about you

Why you are here today ?

FARNEK.COM **E** SMART AND GREEN FM COMPANY

6

COP28UAE	By 2030 , Energy Efficiency should be ?
	A -double
	B -triple
	C- quadruple
	D – the same

COP28UAE	Er

Energy Efficiency improvement targets?

A –1% per annum

B –2% per annum

C – 3% per annum

D –4% per annum

By 2030 , Renewables should be ?		
A -double		
B – Triple		
C- quadrupie		
D – the same		

Why Energy Transition is vital for net-zero?

> 73% global emissions from Energy

OurWorldinData.org – Research and data to make progress against the world's largest problems. Source: Climate Watch, the World Resources Institute (2020). Licensed under CC-BY by the author Hannah Ritchie (2020).

Energy Transition is key for achieving net-zero

- 60% CO2 Energy Emissions since 1992
- 80% of current energy is from fossil fue

Energy transition refers to the global energy sector's shift from fossilbased systems of energy production and consumption including oil, natural gas and coal

G7 energy-related emissions and electricity sector milestones in the Net Zero Emissions by 2050 Scenario, 2020-2050

Energy Transition in the UAE

01

An ambitious journey The climate action journey in the energy sector to reach net zero by 2050

Major changes made in the updated version of the UAE Energy Strategy 2050 Targets for the year 2030 Capital Reliability and security Emissions Unit cost of Energy Total cost of investment (in of power supply and reduction efficiency generation (in generation AED billion) resilience of systems AED billion) (Fils/kWh) 2017 General focus is on the transformation of the Achieving Net Zero by 2050 energy sector. 2023 ~500 -350-400 -150-200 -337 Focus is on specific -42-45% %0% enablers such as policies -40% and regulatory, technical, -38 -25-30 and technological tools to facilitate transition in the power sector and achieve net zero by 2050. 2017 2023 2017 2023 2017 2023 2017 2023 2017 2023

Economy | investment | Environment | Power supply security | Reliability | Flexibility | cost reasonableness | Sustainability | the growth

FARNEK

UAE Net- Zero Strategy – Grid Decarbonization

UAE Net- Zero Strategy – Renewables

UAE Net- Zero Strategy – Energy Efficiency

UAE Net- Zero Strategy – Buildings

Decarbonization for the Built Environment

Decarbonizing built Environment

Global CO, Emissions by Sector

How to achieve net- zero in the built environment ?

Source: © 2018 2030, Inc. / Architecture 2030. All Rights Reserved. Data Sources: UN Environment Global Status Report 2017; EIA International Energy Outlook 2017

Definitions: Net Zero Carbon Buildings

What is the Cleanest Energy

The Energy that you don't use

Energy Transition Priorities

Energy Transition - Challenges

Energy Saving Retrofits for Existing Buildings

Understanding building energy performance

Energy Use Index (EUI): metric used to measure the energy consumption of a

Energy Benchmarking

building or facility in relation to its size or function

Energy Breakdown

*DEWA Sustainable Building

Energy Saving Measures for Existing Buildings

1. LED Lighting Upgrades	2. HVAC System Optimization	3. Building Insulation Enhancements	4. Programmable Thermostat Installation
5. Energy-Efficient Appliance Upgrades	6. Water Heating System Improvements	7. Building Automation System Implementation	8. Window Treatments for Energy Efficiency
	9. Occupancy Sensor Installation	10. Energy Management Software Integration	

Energy Saving Solutions - ESPC

- Energy Saving Performance Contracting (ESPC) is low-risk method of financing and delivering energy
 efficiency improvements for businesses that lack the funds, technical experience and manpower needed
 for such projects.
- ENERGY SERVICE COMPANY (ESCO) DELIVER TURNKEY ENERGY PROJECTS WITH SAVINGS GUARANTEES

Proposed Energy Savings Solutions- Activities

YOUR SUSTAINABLE PARTNER

ESPC Model- shared saving model

No Capital Investment, Risk Free Savings For Owners

ESPC Model– Guaranteed Saving Model

Guaranteed Savings & Risk Sharing With Owners

Continuous Energy Management

What is Missing in Project-Based Approach to Energy Efficiency?

A more Comprehensive approach to Energy Efficiency is needed

Organizations that target behavioral and organizational barriers, as well as technological, can achieve continual improvement in energy performance.

ISO 50001:2018 Energy Management Processes

FARNEK

Continuous Monitoring and Energy Optimization

A holistic approach, connecting support to operational units & providing daily, monthly & yearly monitoring of KPIs like energy performance, waste performance and CO2 footprint

POWERTEK

- Enhanced Energy Optimization
- Real time Data streaming & Analytics
- Utility Bifurcation/ Load
 Profile Visualization
- Asset Level Efficiency Tracking
- Building Energy Use Index Monitoring
- Energy/Water/Waste Benchmarking
- Integration with BMS & IoT Sensors
- Waste Performance
- Carbon Emissions

Portfolio Management

Continuous performance management to drive and improve efficiencies

Benchmarking

Comparing with similar properties & hotel's own historic performance

PEER BENCHMARKING

FARNEK

80 [% Occupancy in 60 40 20 Property B - I/Guest - I/SU - Occupancy - Avg I/Guest - Avg I/SU Carbon Footprint 100 40 - 80

100

INTERNAL BENCHMARKING

FARNEK.COM = SMART AND GREEN

100

80

60

Occupancy (%)

Trend & Cost Analysis : Energy & Water

7.0K

8.0K

5.0K

2.0K

1.0K

0

FARNEK

원 4.0K

FARNEK.COM **E** SMART AND GREEN

Carbon Footprint (Scope 1, 2 & 3)

1.8K

1.6K 1.4K 1.2K ± 1.0K ± 800 600 400

200

FARNEK.COM **E** SMART AND GREEN

Case Studies

Continuous Optimization for Farnek Village

FARNEK

ECMs IMPLEMENTED IN THE YEAR-2023

- Permanently Switched OFF 4-Feet LED Light Fixtures in 1st to 4th Floor Corridors & Dinning Hall in Basement
- □ Free Cooling through FAHUs (Operated FAHUs 1,2,3,4&7 with Condensing Units in OFF Mode from 6:00PM to 6:00AM for the month of Jan, Feb, Mar, Nov & Dec)

2023 ENERGY SAVINGS BR	ENERGY SAVINGS BREAKDOWN		
Total Savings in kWh	459,594		
Total Savings in AED	197,626		
Carbon Emissions Avoided (kgCO2eq)	193,000		

