

EMIRATESGBC TECHNICAL WORKSHOPS EMIRATESGBC X EGIS

Whole Life-Cycle and Embodied Carbon Analysis Approach for Projects and Existing Buildings

Presented by **Teeba Aljabery**, Sustainability Specialist, Egis.

13th October 2023

EMBODIED CARBON & LIFECYCLE ANALYSIS

Teeba Aljabery

Sustainability Specialist

Teeba.al-jabery@egis-group.com

contents

- 1. Defining Lifecycle Analysis (LCA) And Embodied Carbon
- 2. Global Targets & Certification

3. LCA Process

- Defining Your Objective
- Setting Goals
- Defining LCA Scope
- Calculation Process
- Outcomes
- 4. Reduction
- 5. Short Exercise

Aim

The aim of this workshop is to provide different stakeholders including architects, engineers, interior designers, sustainability specialists and contractors, with

Comprehensive understanding of LCA and embodied Carbon

Ability to carry out the LCA & embodied carbon accounting

Set carbon reduction plans for projects

DEFINING LIFECYCLE ANALYSIS & EMBODIED CARBON

The Bigger Picture

Lifecycle Stages

Life cycle analysis (LCA) is a method of quantifying the environmental impacts associated with a given product.

CARBON

CARBON

LCA Possible Outcomes

GLOBAL TARGETS & CERTIFICATIONS

WORLD GREEN BUILDING COUNCIL (WGBC) VISION

By 2030, all new buildings, infrastructure and renovations must have at least **40% less embodied carbon** with significant upfront carbon reduction, and all new buildings must be **net zero operational carbon**.

By 2050, new buildings, infrastructure and renovations must have **net zero embodied carbon**, and all buildings, including existing buildings, must be **net zero operational carbon**.

International Certifications

LEED BD+C: New Construction v4.1 -LEED v4.1

Credit Name: Building Life-cycle Impact Reduction **Path 1:** Conduct a life cycle assessment of the project's structure and enclosure (1 point).

Path 2: Conduct a life cycle assessment of the project's structure and enclosure that demonstrates a minimum of **5% reduction** compared with a baseline building (2 points).

Path 3: Conduct a life cycle assessment of the project's structure and enclosure that demonstrates a minimum of **10% reduction** compared with a baseline building (3 points).

Path 4: Meet the requirements of Path 3 and incorporate reuse and/or salvage materials into the project's structure and enclosure for the proposed design. Demonstrate reductions compared with a baseline building of at least **20%** reduction (4 points)

Local Certifications & Embodied Carbon

Local Certifications & Embodied Carbon

LCA PROCESS

Step 1: Define Your LCA Scope

A1 - A3 Product stage

Al Raw material extraction A2 Transport to manufacturing site A3 Manufacturing

A4 - A5 Construction stage

A4 Transport to construction site A5 Installation / Assembly

B1-B5 Use stage

Bl Use B2 Maintenance B3 Repair B4 Replacement B5 Refurbishment C1 - C4 End of life stage

C1 Deconstruction & demolition C2 Transport C3 Waste processing C4 Disposal

Step 2: Data Collection

what data do you need?

Data Tracking Methodology

What Is An EPD?

Environmental product declarations (EPDs) are environmental labels that report a peer-reviewed summary of the results of a lifecycle assessment (LCA) of a certain material or product.

bre

Environmental Product Declaration

BREG EN EPD No.: 000055

UK CARES)

Company Address

PO Box 9022. Industrial City of Abu Dhabi (ICAD-I), Mussafah Abu Dhabi

D. Hunders 30 March 2015 Derek Hughes 30 March 2015 30 July 2016

BF1331ECOP Rev 0.2

This verified Environmental Product Declaration is issued subject to terms and conditions (for details visit www.greenbooklive.com/terms) To check the validity of this EPD please visit www.greenbooklive.com/check BRE Global Ltd., Garston, Watford WD25 9XX.

T: +44 (0)333 32188 11 F: +44 (0)1923 664603 E: Enquiries@breglobal.com Page 1 of 11

emirates steel

© BRE Global Ltd 2015

EPD

EPDs Content

All EPDs provide the reader with

Step 2: Data Collection

Examples of online EPD libraries

<u>The</u>
International
EPD System

Dap habitat

PEP Ecopassport <u>One Click LCA</u> <u>Database</u>

Step 2: Data Collection

Free database:

ICE Database V3

ICE (Inventory of Carbon & Energy)							
Authors: Affiliation:	Dr Craig Jones*	Professor Geoffrey Hammond					
*corresponding author. Contact details: http://www.circularecology.com/contact.html							
Version Control							
Versio	n:	V3.0 - 10 Nov 2019					
ls this version still <u>Che</u> valid? <u>ne</u>	eck link below, to see if a wer version is available.						
Check if this copy is up date	to <u>http://www.circularecol</u> at:	ogy.com/embodied-energy-and-carbon-footprint- database.html					

Step 3: Calculation

eTool

CARDINAL LCA

Step 4: Analyse The Carbon Footprint

Look at the carbon footprint of the building over its lifetime

Step 4: Analyse The Carbon Footprint

Step 5: Base-case & Proposed **Scenarios**

Base-case scenario of conventional construction practices in the region:

- Concrete: No recycled content (0% GGBS)
- Steel: No recycled content
- Timber: Not FSC certified

Proposed scenario based on targeted the materials specifications and building design:

- Concrete: with cement replacements
- Steel: with recycled content
- Timber: FSC certified
- Carbon Cure
- Materials produced with renewables
- Structural Design

Major Materials Scope

REINFROCEMENT

Sample Output

Proportions of embodied carbon by building elements

Sample Output

Embodied carbon assessment summary

CARBON REDUCTION

Embodied Carbon Reduction

01 PREVENT

Avoid embodied carbon from the outset by considering alternative strategies to deliver the desired function

03 PLAN FOR THE FUTURE

Take steps to avoid future embodied carbon during and at end of life, maximising potential for maintenance, renovation, reuse and deconstruction

02 REDUCE AND OPTIMISE

Evaluate each design and construction choice in terms of the upfront carbon reductions and as part of a whole lifecycle approach

04 OFFSET

As a last resort, offset residual embodied carbon emissions within the project or organisational boundary where possible or if necessary through verified offset schemes.

Responsibilities Toward Carbon Reduction

4 Bedroom Villa In Dubai, UAE

You are working on a new project which is a 4-bedroom villa in Dubai, UAE. The project has reached the 100% Schematic Design stage, and you received the following information from the structural engineering team.

Estimate the upfront carbon for the lifecycle stage **(A1-A3)** for one grade of concrete:

- Grade: C32
- Cement Replacement: GGBS
- Percentage of Replacement: 70%
- Quantity: 500,000 kg of C32

Helpful Resources – ICE Database

% Cement Replacement - GGRS	Embodied Carbon Factor (A1-A3) (kgCO2e/kg)			Unit	Source
/ cement Replacement GGD5	25%	50%	70%		
C20/25 (20/25 MPa)	0.094	0.068	0.053	kgCO2e/kg	ICE database v3
C25/30 (25/30 MPa)	0.100	0.072	0.056		
C28/35 (28/35 MPa)	0.107	0.078	0.058		
C32/40 (32/40 MPa)	0.120	0.089	0.063		
C35/45 (35/45 MPa)	0.129	0.095	0.068		
C40/50 (40/50 MPa)	0.138	0.102	0.072		

YOUR ANSWER SHOULD BE APPROXIMATELY

31,500 kgCO2e

READING RECOMMENDATION

By WGBC

By LETI

ANY QUESTIONS?