

Agenda

OVERVIEW OF AIR POLLUTION EXPOSURE TO AIR POLLUTION HEALTH RISK TO HUMANS PM1 FOCUS ISO16890 HOW FILTERS CONTRIBUTE ENERGY SAVING **SUMMARY**

4 million people die as a result of household exposure (WHO)

3 million people die as a result of ambient air exposure (WHO)

7 million people die yearly due to air pollution related diseases – 1/9 deaths

95% of the world population is breathing unhealthy air

Deaths From Air Pollution Worldwide

Age-standardized deaths per 100,000 people attributable to air pollution (2016)*

The air we breathe

We spend up to **90%** of our life indoors. This means that indoor air quality (IAQ) can substantially influence our health.

emirates

مجلس الأمار ات للأبنية الخضراء Emirates Green Building Council

Humans breathe **15 kg** air/day

Air pollution reporting

- Many governments and NGOs publish real-time data about PM
- Most commonly reported are PM10 and PM2.5
- PM10 all particles =/< 10μm (1μm = 0.001mm)
- WHO published air quality guidelines (AQG) in 2005, including PM10 and PM2.5

PM1 FOCUS

- By orders of magnitude, the number of PM1 > number PM2.5 > PM10
- Scientific and medical community are increasingly realising the risk of PM1 to human health
 - Especially particles from combustion processes
 - A 2016 study linked PM1 polyaromatic hydrocarbons (PAH), mutagenicity and removal from city air by filtration
- Ultrafine metallic particles linked to Alzheimer's
 - <u>06 September 2016</u>
 - Researchers at Lancaster, Oxford and Manchester universities.
 - Report a link between ultrafine (<0.1 μm) metallic particles reaching the brain and onset of Alzheimer's Disease.
 - The metallic particles appear to have been exposed to high temperature (fused).
 - The suspected source of the particles is diesel engine emissions.

Prof David Allsop et al, Proceedings of the National Academy of Sciences

• WHO are currently consulting on new AQGs – to supplement PM2.5 and PM10 reporting.

Or to be more precise:

PM₁ particles are the most dangerous The smallest of PM₁ particles are the most dangerous Ultrafine < 0,1 μ m & Nano < 0,05 μ m

Penetration of pm (particulate matter) into the body

PM10 Size <10μm Coarse particles. Upper respiratory tract

PM2.5 Size <2.5μm Fine particles. Lower respiratory tract

PM1 Size <1μm Inhaleable particles Alveoli

Size <0.1µm Ultrafine particles. Bloodstream / whole body

PM (particulate matter) Nitrogen dioxide (NO_2) Ozone (O_3) Sulphur dioxide (SO_2)

Probable that future WHO Air Quality Guidelines will focus on ultra fine particles (<0.1µm)

Ultrafine particles correlate with nitrogen dioxide concentrations

THRESHOLD IN UAE

مجلس الامار ات للآب en Building Council

Sampling Schedule	Type of Samples	Maximum Acceptable	Sampling Duration	
Before operating the Building.	Formaldehyde < 0.08 ppm			
	Total Volatile Organic Compound (TVOC)	< 300 micrograms/ m³	8-hour continuous monitoring (8 hour time-weighted average [TWA])	
	Respirable Dust (<10 microns)	< 150 micrograms/ m ³		

Sampling Schedule	Type of Samples	Maximum Acceptable	Sampling Duration
Initial test completed by 31 December 2011. Further testing within 5 years of last compliant test.	Ozone	< 0.06 ppm (120 micrograms/ m³)	
	Carbon Dioxide	< 800 ppm (1440 microgram/ m³)	
	Carbon Monoxide	< 9 ppm (10 micrograms/ m³)	8-hour continuous monitoring (8 hour time-weighted average [TWA])
	Bacteria	< 500 CFU/ m ³ (Algar plate)	
	Fungi	< 500 CFU/ m ³ (Algar plate)	

ISO 16890

Air Filters for General Ventilation

INTRODUCTION

- A significant harmonisation for the air filtration industry has been recently adopted.
- A new standard for filter testing and classification with <u>global</u> coverage.

ISO16890 "Air Filters for General Ventilation"

Why a new global standard? What are the customer benefits?

Recognition

Air filters positively influence air quality and human health

More intuitive

Filter efficiency and classification aligned with real world air pollution

Global applicability

Eliminate confusion

ISO 16890: Timeline

COMPARISON OF TEST STANDARDS

	EN779:2012	ASHRAE 52.2	ISO16890
Filter test method	Testing efficiency with 0,4μm particles	Testing efficiency with 0,3- 10 μm particles. Classifications relate to results for E1, E2 & E3 efficiency classes – MERV rating	Testing efficiency with 0,3- 10 μm particles. Classifications relate to result for PM1, PM2.5 & PM10
Discharging method	Discharges filter media only, using IPA soak Tough discharging method	Discharges entire filter Using KCL salt Soft discharging method (not mandatory – App. J)	Discharges entire filter using IPA vapor Tough discharging method
Filter loading method	Dustloading with ASHRAE dust Coarse & sticky dust	Dustloading with ASHRAE dust Coarse & sticky dust	Dustloading with ISO fine dust Finer & less sticky dust
Classification system	9 Classes	16 Classes	49 classes in 4 Filter Groups

EmiratesGBC مجلس الأمارات للأبنية الخضراء Emirates Green Building Council

ISO16890: How Does it Work? The standard is written in four parts:

Part 1: Technical specifications, requirements and classification system.

Part 2: Measurement of fractional efficiency.

Part 3: Determination of the arrestance and the air flow resistance versus the mass of test dust.

Part 4: Conditioning method to determine the minimum fractional test efficiency.

Filter Classification 4 filter groups

Group Designation		Class reporting		
	ePM1, min	ePM2.5, min	ePM10	value
				Initial grav.
ISO Coarse	-	-	<50%	arrestance
ISO ePM10	-	-	≥50%	ePM10
ISO ePM2,5	-	≥50%	-	ePM2.5
ISO ePM1	≥50%	_	-	ePM1

ISO16890: CLASSIFICATION SYSTEM

ISO16890: CLASSIFICATION TABLE

PM1 classification

ePM1[95%]

ePM1[90%]

ePM1[85%]

ePM1[80%]

ePM1[75%] ePM2.5[75%] ePM1[70%] ePM2.5[70%] ePM1[65%] ePM2.5[65%] ePM1[60%] ePM2.5[60%] ePM1[55%] ePM2.5[55%] ePM1[50%] ePM2.5[50%] **Requirement:** Requirement: > 50% initial efficiency > 50% initial efficiency > 50% initial efficiency requirement > 50% discharged efficiency > 50% discharged efficiency No discharge requirement

ISO 16890 TEST REPORT

								Testing Org	ganization:	
ISO 16890-1:2016 - Air Filter Test Results						Drivella star 4 501 15 Decks Grandes			501 15 De råe. Som den	
								Brineligatan 4,	501 15 Boras, Swedan	
								+46010516500	0	
GENERAL										
Report no.: 6P07577-2	25-rev1	Date of test	s:	2017-02-16	- 2017-0)2-23		Date of report	: 2017-03-02	
Supervisor: CM						Device	obtaine	d (when and ho	ow obtained):	
Test(s) requested by:	Camfil AB					The de	evice w	as sent and ol	otained on 2017-02-14	
DEVICE TESTED						-				
Model: Hi Flo II				Manufacture	r:		Construction:			
XLT 7/640 50+ (HFGX-F	7-592/592/6	40-10-25)		Camfil AB		Pocket filter, 10 Pockets				
Article number:		Type of med	lium	Net effective filtering area:				Filter dimensions (width x height x depth)		
610165		Glass		7.3	7.3 m ² 592x592x640 mm) mm		
TEST DATA AND AT	FACHED	TEST REF	PORTS	•				•		
Test air flow rate:	Test aersole	:	Test report	t to ISO 1689	90-2		Report no. 6P07577-25-rev1 Appendix 2			
0.944 m ³ /s	KCl(1-10	μm)	Test report	t to ISO 1689	90-3 (optional	l)		Report no.	6P07577-25-rev1 Appendix 3	
	DEHS (0.3	3 - 1 μm)	Test report	t to ISO 1689	90-4		Report no. 6P07577-25-rev1 Appendix 4			
RESULTS										
Initial pressure differential: Initial grav. arrestance:				ePM _{1, min}		ePM _{2.5}	,min	ISO rating		
72 Pa 97			%	63	%		73 %			
Final test pressure differential: Test dust capacity:			ePM1	ePM _{2.5}		ePM ₁₀	ISO ePM 1 60 %			
300	Pa		1160	g	64 %	73	%	91 %		

Eurovent 4/23

Selection of ISO 16890 rated Air Filters for General Ventilation Applications

Eurovent 4/23

Recommendation for the selection of ISO 16890 rated air filters for general ventilation applications Developed in a joint effort by the participants of the Eurovent Product Group 'Air Filters

Published on 09 January 2018

Category	Description	Typical environment
ODA 1	OUTDOOR AIR, WHICH MAY BE ONLY TEMPORARILY DUSTY Applies where the World Health Organisation WHO (2005) guidelines are fulfilled (annual mean for PM2.5 \leq 10 µg/m ³ and PM10 \leq 20 µg/m ³).	
ODA 2	OUTDOOR AIR WITH HIGH CONCENTRATIONS OF PARTICULATE MATTER Applies where PM concentrations exceed the WHO guidelines by a factor of up to 1,5 (annual mean for PM2.5 \leq 15 µg/m ³ and PM10 \leq 30 µg/m ³).	
ODA 3	OUTDOOR AIR WITH VERY HIGH CONCENTRATIONS OF PARTICULATE MATTER Applies where PM concentrations exceed the WHO guidelines by a factor of greater than 1,5 (annual mean for PM2.5 > 15 μg/m ³ and PM10 > 30 μg/m ³).	

Outdoor Air (ODA) How clean is my Outdoor Air?

- 3 Outdoor Air Classes (ODA 1-3)
- Based on WHO Thresholds:
- Annual mean for PM2.5 < 10 μg/m3
- Annual mean for PM10 < 20 μg/m3

Supply Air Classes (SUP)

SUP 1	refers to supply air with concentrations of particulate matter which fulfilled the WHO (2005) guidelines limit values multiplied by a factor x 0,25 (annual mean for PM2.5 \leq 2.5 µg/m ³ and PM10 \leq 5 µg/m ³).
SUP 2	refers to supply air with concentrations of particulate matter which fulfilled the WHO (2005) guidelines limit values multiplied by a factor x 0,5 (annual mean for PM2.5 \leq 5 µg/m ³ and PM10 \leq 10 µg/m ³).
SUP 3	refers to supply air with concentrations of particulate matter which fulfilled the WHO (2005) guidelines limit values multiplied by a factor x 0,75 (annual mean for PM2.5 \leq 7.5 µg/m ³ and PM10 \leq 15 µg/m ³).
SUP 4	refers to supply air with concentrations of particulate matter which fulfilled the WHO (2005) guidelines limit values (annual mean for PM2.5 \leq 10 µg/m ³ and PM10 \leq 20 µg/m ³).
SUP 5	refers to supply air with concentrations of particulate matter which fulfilled the WHO (2005) guidelines limit values multiplied by factor x 1,5 (annual mean for PM2.5 \leq 15 µg/m ³ and PM10 \leq 30 µg/m ³).

Examples for Supply Air Classes (SUP)

Recommended Minimum Efficiency

س الأمار ات للأبنية الخضر ا: Emirates Green Building Co

Table 3: Recommended min. ePMx filtration efficiencies depending on ODA and SUP category. Annual mean PMx values in µg/m³

* Minimum filtration requirements ISO *e*PM₁ 50% refer to a final filter stage

** Minimum filtration requirements ISO *e*PM_{2.5} 50% refer to a final filter stage

Presented efficiency values concern both single filter and multi-stage filtration systems with a cumulated efficiency.

Eurovent 4/21

Energy efficient air filtration

ENERGY SAVING POTENTIAL WITH FILTERS

- Filters are the 2nd largest contributor of Pressure drop in a HVAC air side
- Rule of thumb says that 70% of the energy bill comes from HVAC air side
- Out of 70% 20% is because of the filters

THE COST OF ENERGY

Without reducing Indoor Air Quality (IAQ)?

- q = Air flow (m^3/s)
- dP = Pressure drop (Pa)
- t = Operating time (hours/year)
- η = Fan efficiency (0,1 0,7)

Eurovent 4/21:2018

M _x = 200 g (AC Fine)	AEC in kWh/y FOR ePM_1 (ePM_1 and ePM_1 , $min \ge 50\%$)								
	A+	A	В	С	D	E			
50 & 55%	800	900	1050	1400	2000	>2000			
60 & 65%	850	950	1100	1450	2050	>2050			
70 & 75%	950	1100	1250	1550	2150	>2150			
80 % 85%	1050	1250	1450	1800	2400	>2400			
> 90%	1200	1400	1550	1900	2500	>2500			

M _x = 250 g (AC Fine)	AEC in kWh/y FOR $ePM_{2.5}$ ($ePM_{2.5}$ and $ePM_{2.5',min} \ge 50\%$)								
	A+	А	В	С	D	E			
50 & 55%	700	800	950	1300	1900	>1900			
60 & 65%	750	850	1000	1350	1950	>1950			
70 & 75%	800	900	1050	1400	2000	>2000			
80 % 85%	900	1000	1200	1500	2100	>2100			
> 90%	1000	1100	1300	1600	2200	>2200			

M _x = 400 g (AC Fine)	AEC in kWh/y FOR ePM_{10} ($ePM_{10} \ge 50\%$)								
	A+	А	В	С	D	E			
50 & 55%	450	550	650	750	1100	>1100			
60 & 65%	500	600	700	850	1200	>1200			
70 & 75%	600	700	800	900	1300	>1300			
80 % 85%	700	800	900	1000	1400	>1400			
> 90%	800	900	1050	1400	1500	>1500			

Filters rated from A+ to E , A+ is the least energy consumed filter and E the highest

CASE STUDIES

BBC Television Centre – Indoor Air Quality & Energy Project

Leave a reply

Camfil Farr UK, have been awarded the TFM contract for this world famous Television studio, commencing with the first filter change which was completed on 30th January 2008.

The contract includes, supply, fit and disposal of all filters throughout the Building, in addition to <u>IAQ</u> <u>monitoring</u> and trials on similar air handling units for Energy Savings and TM44 compliance.

Indoor Air Quality program to improve IAQ across the estate is underway. In parallel the energy optimisation is being rolled out through JCI as air handling units are due for filter change.

All air handling units are being fitted with single stage low energy Hi-Flo bag filters, thereby significantly reducing the pressure exerted on the fans. Graham Massey, Energy Conservation Manager initiated the pilot study in May 2009 and commented: –

"The study was conducted on two identical air handling units. This has been monitored monthly and Camfil filters are still going strong. The energy savings are significant, saving over £3000 alone per year on one air handling unit".

Based on multiple Air Handling Units accommodating

over 4100 air filter sets per year

Cost saving per filter set* £54

Cost saving for all filters* £233396

Energy saving per filter set (kWh) 771

Energy saving for all filters (kWh) 3162857

CO2 saving per filter set (tonnes) 0.42

CO2 saving for all filters (tonnes) 1720

* calculations based on £0.07 / kWh

King's College save energy and improve air quality

Leave a reply

Camfil Farr - Energy Saving Case Study.

<u>Camfil Farr</u> won a 3 year contract at King's College London to optimise AC plant. By working closely with the College, Camfil have identified <u>substantial savings on their HVAC plant</u>.

Over several buildings including 28 air handling units savings are projected to be 55 thousand pounds over 5 years with capital payback of less than 12 months. After conducting a thorough <u>Air Handling Plant Assessment</u> Camfil were able to accurately predict savings on <u>Filters</u>, <u>Energy</u>, Labour and <u>Waste disposal</u>.

Camfil Case Study – Astra Zeneca Progressive Energy Reduction Strategy

Leave a reply

<u>Camfil Farr</u> secured supply contract at Astra Zeneca sites across the United Kingdom back in 2004. Since then accumulated savings resulting from low energy product procurement strategy has reached £1.2 million and over 1000 tonnes of CO₂.

Download the Astra Zeneca Progressive Energy Reduction Strategy Case Study here

Subscribe to the Low Energy Air Filter Blog here

- 1/9 death is from air pollution
- Ultrafine particles are more harmful
- ISO16890 is a new global standard for testing and classification of air filters
- Selecting ePM1 filters will result in improved air quality and lower health risk
- Eurovent 4/23 provides hands on and effective advice for HVAC planners and manufactures of ventilation equipment to correctly design filtration
- By selecting right filters, upto 20% of energy savings can be achieved

